lymphoid tissue. The multicentric form sometimes occur in HIV positive patients.

Histologically it is divided into a Hyaline vascular type and a Plasma cell type. The Hyaline vascular type is usually clinically localized while the Plasma cell type is usually multicentric.

Treatment decisions depend on the clinical subtypes and not on microscopic subtypes. Localized Castleman disease is treated with surgery and external beam radiation for cases not amenable to surgery. Chemotherapy either alone or in combination with radiotherapy or steroids is used in multicentric Castleman disease.

Monoclonal antibodies like rituximab or tocilizumab can neutralize the targets for IL-6 on cell surfaces.

References

Prolonged haloperidol induced Parkinsonism in a patient with cirrhosis

KP Ruvan Prasad1, DGS Alahakoon2
1Lecturer, Department of Pharmacology, Faculty of Medicine, University of Ruhuna, Karapitiya, Galle.
2Consultant Physician, Teaching Hospital, Kandy.

Introduction
Haloperidol is a high potency typical antipsychotic agent having an increased propensity to cause drug induced extrapyramidal symptoms (EPS). Prolonged drug induced Parkinsonism with haloperidol use has been reported a few times in world literature 1,2. We describe here a patient who had haloperidol induced Parkinsonism for about seven weeks after discontinuation of the drug.

Case report
A 56 year old lady was admitted to Teaching Hospital Kandy with an acute confusional state which was retrospectively diagnosed as an episode of steroid induced psychosis. On physical examination, patient did not have rigidity, bradykinesia or any other features of Parkinsonism. Haloperidol lactate 10 mg was given intramuscularly to calm the patient and it was followed by oral haloperidol 1.5 mg and benzhexol 2 mg twice a day. Investigations done while she was taking in-ward treatment revealed that she is having cirrhosis (Macronodular cirrhosis in liver biopsy). She was not on any other medication which was likely to give rise to EPS.

She was reviewed in the clinic one month afterwards. Neurological examination revealed symmetrical rigidity of all four limbs. Both leadpipe and cogwheel rigidity was clearly seen. Facial expression and gait were normal. No resting tremors were seen. A mild bradykinesia
was noted. Serum caeruloplasmin, 24-hours urinary copper excretion, antidouble-stranded DNA antibodies, serum ferritin, contrast CT and MRI scan of brain and an EEG did not reveal any abnormalities. Haloperidol was stopped suspecting antipsychotic induced Parkinsonism.

Patient was reviewed in the clinic every fortnightly for one month and in three weeks thereafter. Seven weeks after stopping haloperidol the patient was completely free of rigidity and bradykinesia. At the time of writing she is attending the clinic regularly for nearly ten months after the disappearance of parkinsonian signs and is clinically well except for mild ankle oedema.

Discussion

The temporal relationship between starting of haloperidol and appearance of parkinsonian signs and the absence of any evidence from clinical findings or investigations to suggest an alternative diagnosis (e.g. basal ganglia infarction, cerebral lupus) confirms that this clinical observation is very likely to be due to haloperidol induced EPS. Complete disappearance of the signs reinforces this possibility, excluding the possibility of this being idiopathic Parkinson’s disease which is progressive in nature.

One explanation for prolonged Parkinsonism in our patient at low normal haloperidol doses may be poor hepatic clearance. Haloperidol is extensively metabolized in liver and has a moderate hepatic extraction ratio. In addition haloperidol is a drug with a narrow therapeutic window. If such drugs are to be given to cirrhotic patients, maintenance dose needs to be reduced and sometimes portosystemic shunts may necessitate reduction in initial dose also. Therefore, in our case, low normal haloperidol dosage may have given rise to high sometimes even toxic serum haloperidol levels. Therapeutic monitoring of serum haloperidol levels was not done as facilities were not available locally.

Another possibility is the inter-individual variation resulting from pharmacogenetic differences. CYP2D6 is an isofrom of cytochrome P450 (CYP450) system involved in haloperidol metabolism. It has been shown that EPS with haloperidol occurred more in poor metabolizers (PMs) for CYP2D6 than extensive metabolizers (EMs) having schizophrenia. Llerena and colleagues demonstrated that PMs for CYP2D6 had significantly longer plasma half life of haloperidol than EMs. Further, independent of the CYP2D6 polymorphism, a higher metabolic ratio (i.e. reduced haloperidol / haloperidol ratio) is seen in most Caucasians compared with majority of Orientals.

Parallel with the EPS due to blockade of dopamine D₂ receptors in basal ganglia, blockade of D₄ receptors in the anterior pituitary causes elevation of prolactin levels in blood. Nishikawa and colleagues describe two cases of prolonged haloperidol induced Parkinsonism with hypokinetic EPS persisting even after prolactin levels return to normal. Thereby they argue the pathophysiology behind this long lasting EPS is not dopamine receptor blockade by neuroleptics but possibly reversible cytotoxicity in dopaminergic neurons.

In our patient most likely a combination of these factors i.e. poor hepatic clearance, genetic polymorphism of CYTP450 or Asian race may have given rise to this prolonged antipsychotic-induced Parkinsonism.

The understanding that haloperidol-induced Parkinsonism can last for several weeks to months after discontinuing the drug is important for the clinician. So that he / she will not be in a hurry to diagnose incurable Parkinson’s disease in a patient with this prolonged manifestation of a reversible adverse drug reaction.

References

A case of cerebral malaria: are we alert to detect?

GJ Pratheepan¹, CK Bodinayake²
¹Registrar in Medicine, ²Consultant Physician, University Medical Unit, Teaching Hospital, Karapitiya, Galle.

Introduction

Malaria is an important treatable cause of fever. Cerebral malaria caused by *Plasmodium falciparum* causes multisystem involvement leading to death. Though malaria was a common illness in Sri Lanka years back, the incidence is now very low. Total of 196 cases of malaria and 8 cases of cerebral malaria were reported in 2007¹. We report a case of cerebral malaria from Galle with many of its complications.

Case report

A sixty year old patient from Panangala was transferred to Teaching Hospital Karapitiya from Udugama hospital with a history of intermittent high fever, dysuria, abdominal pain and confusion for three days. He had anorexia, malaise and myalgia. He had no past history of malaria and has not traveled to a malaria endemic area.

On examination, he was drowsy. Temperature was 102⁰ F. Mild icterus and conjunctival suffusion were present. There was no neck stiffness. His pulse was 100 bpm and blood pressure was 110/70 mmHg. There were bilateral basal crepitations in the lungs. Abdominal examination revealed 2 cm hepatomegaly and suprapubic tenderness. Spleen was not palpable.

During ward stay he had rigors with drenching sweats. He became increasingly drowsy, restless and developed abnormal rapid breathing. Patient received IV Broad spectrum antibiotics as for septicaemia as he had neutrophil leukocytosis and moderately field full pus cells in urine. His blood glucose remained persistently below 2.2 mmol/L.

Fever with rigors, confusion, hypoglycaemia and absence of neck stiffness led to the clinical suspicion of cerebral malaria. Thick and thin blood films showed *Plasmodium falciparum* in its ring stages.

Investigations

He had a white cell count of 17,700 /mm³ with 82% neutrophils, 13% lymphocytes, 2% eosinophils and 3% monocytes. His platelet count was 26,000 /mm³ and Hb was 12.7 g/dL. Blood picture showed normocytic normochromic red cells with neutrophil leukocytosis and thrombocytopenia. UFR revealed moderately field full pus cells and red cells.

His FBS was 1.5 mmol/L, RBS was 2.2 mmol/L, blood urea was 65 mg/dL and serum creatinine was 2.0 mmol/L. He had SGOT of 147 U/L, SGPT of 78 U/L, and INR of 1.6

His ECG was normal. Arterial blood gas analysis showed PH of 7.386, PaCO₂ of 24.4 mmHg, PaO₂ of 88.5 mmHg, HCO₃⁻ of 17.7 mmol/L and O₂ saturation of 96.8%.

Abdominal ultrasound scan revealed bilateral Staghorn calculi. There was no renal parenchymal disease or hydronephrosis. Mild